Architecture Concepts For A Future Heterogeneous, Survivable Tactical Internet

Dr. John Chapin
Program Manager
Strategic Technology Office
john.chapin@darpa.mil, 703-248-1533

Symposium: Novel Methods for Information Sharing in Large-scale Mobile Ad-hoc Networks

August 8, 2013

Scope of 2012 DARPA/STO network architecture study

Internetworking layer and services

Services available in all modalities (wired, wireless, optical, SATCOM, ...)

Data and control functions that coordinate and integrate subnets

Fundamental design features appropriate for multiple modalities / environments

Out of scope:

Network designs for specific modalities / operational environments

Internetworking layer should enable deploying such networks faster than today, with better GIG integration.

DARPA Rationale for a new internetworking architecture

Military utility of current Internet

Support strategic operations

Survive a nuclear attack

Environment of current Internet

Wired network

Constrained resource

Link bandwidth

Military goals for this study

Support tactical and theater operations

Survive close contact with a peer adversary

Environment for this study

Heterogeneous network

Constrained resource varies by situation

- Link bandwidth
- Spectrum
- Power consumption
- Detectability
- Latency

This is a different target than the NSF FIA

DARPA Detail on new military goals

Support tactical operations

Rapid change in environmental attributes

Limited support personnel

Mission critical communications (time deadline delivery)

Survive close contact with peer adversary

Jamming from adversary or from blue EW

Targeting on and exploitation of transmissions

Destruction of relays/gateways

Cyber penetration of some nodes

DARPA New Internet-layer services

A service consists of a network stack and implementations of core functions (naming, authentication, control) needed to support application information exchange.

Examples

Hard Core: Maximize probability of on-time delivery

Proactively provision multiple paths between nodes. Increase resources deadline is at risk. Use Byzantine or attack resilient algorithms at all layers.

AJ: Survive adversary jamming

Spread information over data stream to minimize vulnerability of high-leverage bits or packets.

LPD: Survive adversary targeting/exploitation of transmissions

Employ low duty cycle, sporadic data transfers with unpredictable timing.

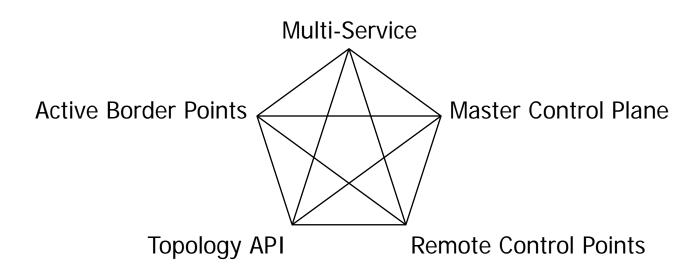
Asymmetric: Connect LPD to unconstrained nodes

e.g. Relays outside threat zone

Elephant: Efficient support for large transfers

Multi-service network requirements

- One node accesses multiple services
- Multiple services active at the same time
- Data flows can transit multiple services

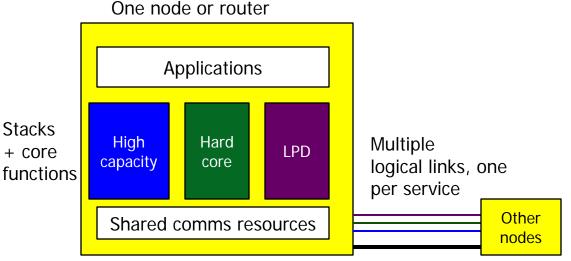


Goal: a coherent internetwork architecture

What does an internetwork look like that has these properties?

While remaining efficient, evolvable, secure, ...

The study identified 5 architectural components that can work together to achieve this.



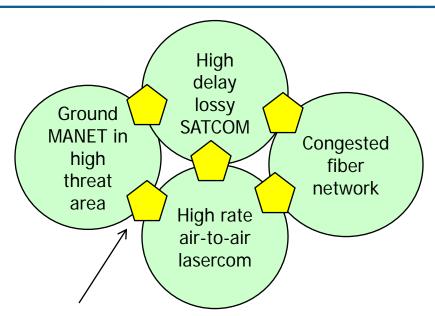
Individually these ideas are not new.

The opportunity is the synergy among them in a greenfield coherent architecture.

DARPA Multi-service: enable multiple services to coexist

Support differentiated behaviors meeting varying mission needs

while


sharing communications resources efficiently as load and resources vary.

May share common link or have unique L1/L2 parameters/resources

- coexistence/sharing mechanisms enabling multiple services
- security isolation between services
- control mechanisms to manage resource allocation among services

DARPA Multi-service: Active Border Points

Current Internet architecture assumes the junction between subnets is a wire.

In DOD nets the junction is a computer or subsystem, so make it part of the architecture: Active Border Point

Expose Border Points to applications/middleware.

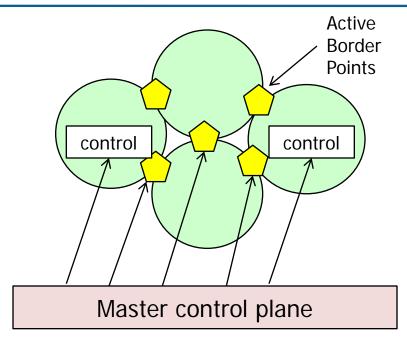
Allow subnets to differ from each other much more than they do today

while

coordinating the subnets more closely to achieve enterprise level goals.

Research gaps:

- scalable segmented transport mechanism with rerouting
- detection of faulty subnets
- security isolation between subnets


Functions:

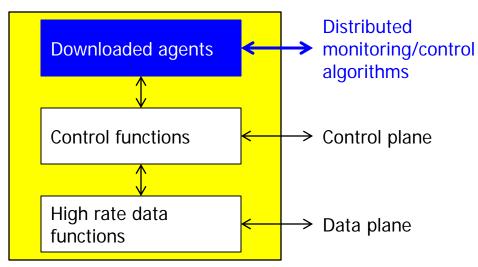
- Transport protocol segmentation
- Remote control point

Security/congestion monitoring and isolation
Used with permission. The views expressed are those of the author and do not reflect the official policy or position of DARPA, the Department of Defense, or the U.S. Government.

Global coordination: Master Control Plane

Provide enterprise-level optimization and management while

preserving local control of each subnet.


Optimize global routing, security, management via a Master Control Plane:

- Coordinate among subnet control systems
- Monitor/control Active Border Points

- distributed global coordination of local control loops
- standard interface to local control planes and management

Modular & evolvable: Remote control points

Network component (router, active border point, end node)

Network components download agents for modular addition of

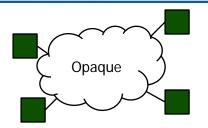
- Distributed monitoring/control functions
- Network-aware middle layers
 - CBMEN, DTN, segmented transport

Agents access control/data plane via an API that protects network security and evolvability.

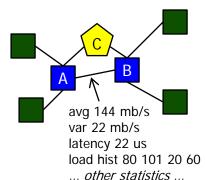
Support distributed and application-specific monitoring and control while

maintaining evolvability and security.

Research gaps:


- Flow naming
- Control authorization
- Statistical representations of key parameters
- Abstract control mechanisms
- Execution environment for agents with:
 - portability
 - security
 - communications to peers
 - scalability between low- and high-capability platforms

 DARPA the Department of Defense or the U.S. Government


Used with permission. The views expressed are those of the author and do not reflect the official policy of position of DARPA, the Department of Defense, or the U.S. Government

Modular & evolvable: Topology API

Network as seen by current applications

Network as seen by application or transport using the Topology API

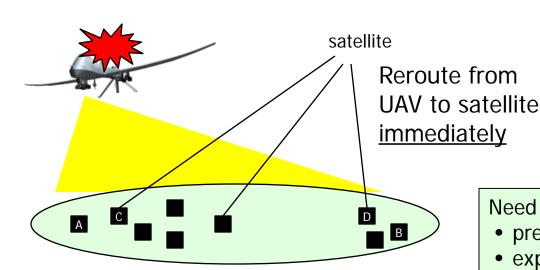
Expose topology, capacity, load information

Support:

- Network-aware applications
- Network-aware middle layers
- Control systems outside the network
 - Autonomous provisioning
 - Control of L1/L2 settings to optimize topology

Expose relevant dynamically changing network state while

maintaining abstraction boundaries and security.


- abstract description
- naming mechanisms
- statistical representations of key parameters
- mitigation of security vulnerabilities
- · efficient information collection
- efficient query mechanisms

New behaviors to be implemented on top of the new architecture

Stabilized rapid adaptation

React rapidly to changes in assets, environment or goals while maintaining stability.

Current Internet layers reacts slowly in order to maintain stability.

Rapid adaptation is required for dynamic operational environments.

Use active control loops to stabilize.

Need mechanisms to:

- preplan then rapidly activate
- expose L1/L2 dynamic changes to L3/L4, while preserving abstraction
- rapidly adapt L3/L4 behaviors

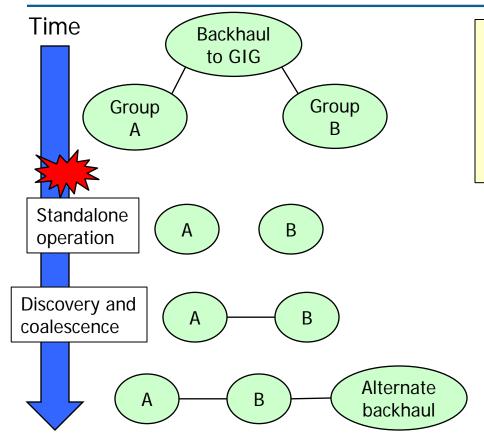
Need control theory for systems with:

- too many variables to measure
- operating away from equilibrium
- multiple distributed control loops
- random time delays
- plant response function changes based on external conditions

Autonomous control

Employ distributed autonomous control and provisioning while

simplifying the network and making it more evolvable.


Autonomous control is essential to:

- reduce personnel requirements
- accelerate reactions in dynamic complex environments
- improve resource utilization
- enable rapid deployment
- re optimize after major environmental or asset change

- Use modeling (of environment, applications, threats) to reduce required communication, reduce response latency, detect anomalies.
- Common language for statistical representations supporting interaction among control systems, learning, and anomaly detection.
- Perform resource allocation and reconfiguration based on mission goals and changing policies.

DARPA Standalone fragments / Reconstitution

Current Internet keeps data routing alive in each fragment, but other core functions fail:

- Name resolution
- Authentication and encryption
- Control

Enable standalone fragments to keep fighting and to coalesce while

achieving the efficiency of centralized control when coalesced.

Gaps:

- Fully distributed implementations of (degraded modes of) core functions, or network designs that eliminate the need for those functions.
- Automatic discovery and coalescence mechanisms.
- Optimize reconstitution through exploiting a broad-area resilient lowrate "heartbeat" subnet where available (e.g. protected SATCOM).

Reconstitution is slow and manual. Used with permission. The views expressed are those of the author and do not reflect the official policy or position of DARPA, the Department of Defense, or the U.S. Government.

Agree? Disagree?

How would <u>you</u> rearchitect the Internet layer to survive close contact with a peer adversary?

Come tell us about it at the <u>next</u> DARPA/STO Novel Methods Symposium.

POC: John Chapin

john.chapin@darpa.mil

703-248-1533